Search results for " SIRT1"
showing 3 items of 3 documents
Fibroblast growth factor-21 enhances mitochondrial functions and increases the activity of PGC-1α in human dopaminergic neurons via Sirtuin-1
2014
Abstract Mitochondrial dysfunctions accompany several neurodegenerative disorders and contribute to disease pathogenesis among others in Parkinson’s disease (PD). Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a major regulator of mitochondrial functions and biogenesis, and was suggested as a therapeutic target in PD. PGC-1α is regulated by both transcriptional and posttranslational events involving also the action of growth factors. Fibroblast growth factor-21 (FGF21) is a regulator of glucose and fatty acid metabolism in the body but little is known about its action in the brain. We show here that FGF21 increased the levels and activity of PGC-1α and elevated mito…
TRPA1 channel is a cardiac target of mIGF-1/SIRT1 signaling.
2014
Cardiac overexpression of locally acting muscle-restricted (m)IGF-1 and the consequent downstream activation of NAD+-dependent protein deacetylase sirtuin 1 (SIRT1) trigger potent cardiac antioxidative and antihypertrophic effects. Transient receptor potential (TRP) cation channel A1 (TRPA1) belongs to the TRP ion channel family of molecular detectors of thermal and chemical stimuli that activate sensory neurons to produce pain. Recently, it has been shown that TRPA1 activity influences blood pressure, but the significance of TRPA1 in the cardiovascular system remains elusive. In the present work, using genomic screening in mouse hearts, we found that TRPA1 is a target of mIGF-1/SIRT1 sign…
Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease
2011
Mitochondrial dysfunction and oxidative stress occur in Parkinson’s disease (PD), but little is known about the molecular mechanisms controlling these events. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a transcriptional coactivator that is a master regulator of oxidative stress and mitochondrial metabolism. We show here that transgenic mice overexpressing PGC-1α in dopaminergic neurons are resistant against cell degeneration induced by the neurotoxin MPTP. The increase in neuronal viability was accompanied by elevated levels of mitochondrial antioxidants SOD2 and Trx2 in the substantia nigra of transgenic mice. PGC-1α overexpression also protected against MP…